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1. Maslennikova

RESONANT EXCITATION
OF SPATIAL PERTUBATIONS IN A BOUNDARY LAYER
IN THE PRESENCE OF A PRESSURE GRADIENT

1. The process of a laminar-to-turbulent transition and the mechanisms which lead to
boundary layer turbulence are not only fundamental problems in fluid mechanics but also
urgent problems in engineering applications. An understanding and quantitative analysis of
transition mechanisms would make it possible to reliably predict and control it.

Experiments conducted in the last 25 years have made it possible to understand that a
transition to turbulence is not unambiguous and different variations of this transition are
possible, but the occurrence of three dimensional phenomena in otherwise two dimensional
flows constitutes an inherent feature of a transition. Two types of transitions were detected
in a boundary layer on a plate, namely the so-called Klebanoff transition [1] and the
subharmonic transition [2-5]. These types of transitions can be distinguished by their driving
mechanisms. A K-transition occurs with the development of a very nonlinear two
dimensional wave of sufficiently high intensity. A subharmonic transition occurs with
perturbations of much lower intensity and is characterized by the excitation of a broad
spectrum of low frequency pertubations in the vicinity of a subharmonic of the fundamental
frequency, the formation of certain spatial structures, and then the rapid rise of intensities of
all perturbations.

Theoretical studies [6-9] revealed the existence of a resonance mechanism which can
explain the powerful excitation of Tollmin-Schlichting waves. The model developed includes
the interaction of a triplet of waves (a Tollmin-Schlichting plane wave and a pair of oblique
subharmonics) and the collective interaction of plane and quasiplane waves with a packet of
subharmonic waves [10-13]. It was demonstrated that a subharmonic transition is a result of
the uncontrolled growth of three dimensional background perturbations and their subsequent
effect on the fundamental frequency. This model has made it possible to explain all the
characteristics of a resonance transition and obtain good quantitative agreement with
experiment results.

All the aforementioned experimental and theoretical studies apply to a boundary layer on
a flat plate. It is obvious that these data are completely inadequate for studying a transition
on actual streamline bodies. Data on gradient flows are limited to calculations on the basis
of linear theory [14]. In light of the fact that under actual conditions a subharmonic
transition is most probable when the oncoming flow is not very turbulent, the task of studying
the characteristics of a resonant mechanism of interaction in triads in gradient flows seems
urgent. This is the purpose of this study. In it we use Faulkner-Skan profiles as model
profiles.

2. The velocity field of perturbed flow in a boundary layer may be represented as

w={U+ gu’, ev’, éw’}, (1)



where ¢(u’, v, w’) are respectively the {x, y, z} components of perturbation of an intensity
€ £ 1; {U(x, y), 0, 0} corresponds to primary flow with an accuracy to within terms ~ 1/Re; U
= U, (x) when
y oo . With an exponential change in velocity outside the boundary layer U, (x) = U,
x," the velocity profile U(y) inside the boundary layer can be determined from a
Faulkner-Skan equation (U = é:'t):

with boundary conditions
DO)=D"(0)=0, ®—1 ¥~ .
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is a nondimensional lateral coordinate. A natural nondimensional variable in the
x-direction is

zzx/ﬂ;zvﬁaER&

v, (2)

Within the framework of these conceptions, the perturbation of longitudinal velocity may
be represented as follows, under the assumption of local parallelism of flow:

3 ———— :
u'(z,y, 2,1y = 2 4;(Re)evitu, (y, Re, kj)e'%,
i=1

0; = fajdz + kjz —eit, j=1,2, 3. (3)

@y Uy, (?J + iYJ =_ QJ (aniksa Rey
can be determined by means of an Orr-Sommerfeld eigenvalue problem.

A synchronized triad of the type described can be defined by the conditions

((L), a, k, 'Y)z=((.0, x, _k, 'Y)g, (.!)2.3=1/2(0“ k1=0.

For slowly changing complex amplitudes 4; = aje'®
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the following system of equations (6—, = 0) is valid: ( vy % _ yl) Ay = eS,4,45h_,

i
(ves e = os) s = 654,43,

a i | T = 2y = vy, P;
In this case vy  are complex group velocities; the coefficients S, and S are expressed
by the solutions of eigenvalue problems; the terms



h 1+ (Acq) take into account low intensity interactions with an increase in desynchronization

in the triad
X
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where
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and the averaging interval

X>»etAa/a.

When desynchronization is slight
Aa/a ~¢

the factor under the integral may be removed, and x
h+ = e andz,-
which agrees with the previously used formula [10-13]. If desynchronization is significant (A &/&
1), then h#+ - 0. In this study we used the approximate formula
laX _ 4
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System (4) is used to model the development of an isolated two dimensional (j = 1)
Tollmin-Schlichting wave in the presence of a background of spatial subharmonics (j = 2, 3)
for different gradient parameters 8 = 2m/(m + 1). With the normalization used

max |u;(Re, y, k;)| =1

0<Yy<oo

the modulus of amplitude a; is equal to the maximum longitudinal velocity of the jth
component with respect to the thickness of the boundary layer.

As the wave evolves, the dimensional magnitudes of frequency and the z-component of the
wave vector are maintained. Under this condition in the case of £ # 0, the nondimensional
frequency parameter F = wv//(x) and the nondimensional wave number k change with a
change in the Reynolds number:

f

F(R) = F(Reg [me| ™ (Re)=F (Rey) (B2,

and Re, corresponds to a starting point of x, .

Below we give the results of calculations for two fixed values of frequency
corresponding to two values of the frequency parameter:

F.(Re,)=1,15-10"* (I) u F,(Re,)=0315-10"" .



In both cases we examined Reynolds numbers whose origins (Re, ) lie in the vicinity of
the maximum rates of increase for a given frequency. Both ranges are depicted schematically
in Figure 1.

Figure 1. Ranges I and II of the Reynolds numbers in question
g: —0,1 (1), 0 (2), 0,1 (3).

Rea
250 550 850 | 750 Re

Figure 2. Curves of the increase of the components of the triplet

B=—0.1; Rec=450; F, (Rey) = 1,15-1074, b=0,275;
X=500.
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3. A number of qualitative properties of the evolution of coupled perturbations in a triad
are independent of the gradient parameter and are determined by the resonant nature of
interaction. Let us examine them using an example of a triplet in gradient flow with 8 =
-0.1.

Typical curves of the increase of a T-S plane wave (solid lines) and an inclined
subharmonic wave (dashed lines) are given in Figure 2. As in the case of nongradient flow
(10), there exists a rather extended region of parametric pumping of the subharmonic of the
plane wave, and the latter behaves linearly. After intensities have been equalized

(a=a, s 2 a))

where occurs a stage of nonlinear interaction leading to an abrupt increase in the intensities
of all the components of the triplet (curves 1, 2). This is the property of nonlinear resonant
instability which is “explosive” in nature and is important for application to the transition
process. However this behavior of perturbations is manifested when initial amplitudes and
interval lengths (Re, , Rey ) are sufficient for equalizing intensities in the region of
instability of the primary wave or somewhat to the right of it. In the opposite case the
perturbations will be damped.

A decrease in initial amplitudes a y (Re, ) and a(Re, ) and the presence of a relative
perturbation phase shift at the starting point
A4 #0 (ap = '¢> ¢ ’(/5 ) cause the “explosion” to shift downstream (curves 2, 3). The
amplitude of the pnmary wave is the main factor determining the evolution of a triplet with a
wide variation of other parameters.

4. In principle, the question of the excitation of three dimensionality in the type of
transition in question seems quite clear. The excitation mechanism is parametric pumping of
random background perturbations of a plane wave, but the structure of this three
dimensionality requires its own explanation.

Experiments in a nongradient boundary layer [3-5] have indicated that three dimensionality
in the pretransition region is manifested in the formation of certain spatial structures which

can be detected by an imaging technique. They are characterized by a wavelength A, which is
approximately twice that of the length of the plane wave and a certain ratio of wavelengths in
longitudinal and lateral directions 3,/A,= k/a,

On a plate, values of A, /A, ranging from 1.36 to 2.96 were obtained with different
perturbation intensities and frequency parameters. In other words, from the background one
can distinguish a predominant perturbation with a certain k which varies widely in relation to
parameters.

In a number of studies [3, S, 15] it was assumed that the resonant mechanism in symmetric
triads is incapable of explaining this discrimination of a predominant mode. It is based on
the idea that interaction is realized primarily in resonant triads (4= (). On a plate in
resonant triads the relation A, /A, & 1 is fulfilled, which corresponds to perturbations
propagated at an angle of approximately 45 degrees to the direction of flow, which is in
contradiction with experiments. However the requirement for exact resonance, which does



not take into consideration the relationships of the coefficients of equation (4) to k is not
necessary. The authors of [10] and [16] demonstrated that on a plate is excited an entire k
spectrum of three dimensional perturbations whose peak corresponds to propagation angles
of 50 to 63 degrees (or A./A, = 14 to 2), which provides a complete explanation for
experiment data. It seems natural that the same discrimination mechanism operates in
gradient flows. Let us examine it in detail for two values of the gradient parameter: B =
-0.1 and 0.1.

Figure 3 illustrates the relationships of desynchronizations Ad to Re for different adjusted
wave number values b(b — 10°.
b{o=10" )

for B = 0 (solid curves) and £ = -0.1 (dashed curves). Different values correspond to
different points Re pes where Ag= 0 is fulfilled. In the case of a zero pressure gradient this
condition is fulfilled when

E =arctg (k/a;) = 45 + 48°

and a decrease in b merely causes the point Re pes to shift in the direction of higher Re. In
contrast to this case, when B = -0.1 there exists a minimum value of b,,;, such that for
smaller b the condition

Aa = () is nowhere fulfilled. The resonance points belonging to the

(Rez , Re gz ) range correspond to angles £ = 53 to 60 degrees. The adjusted numerical
values are independent of frequency.

When B = (.1 resonance conditions and the relationship of Aato b are the same as in the
case of nongradient flow. The local rate of increase of the subharmonic in the parametric
region is a function of Re, b, and the amplitude of the plane wave:

—i— g—i = o = Real {(y, + eSA4;h)/v,}.
Figure 4 (solid curves 1-6) illustrates the relationship ¢’ (b) for B = -0.1 at the point Re

= 574 inside a curve of neutral stability (c.n.s.). Curve 1 corresponds to linear instability (a2, =
0) At low primary wave amplitudes a; (Re, )<0.015%, as in the linear case, planar
subharmonics are the most unstable (curve 2). When a, (Re, ):0.015% (curve 3), there
appears a pronounced peak of the rate of increase when b # 0 which corresponds to inclined
subharmonics with k/@ = 1.37

( § = 53 degrees), which in turn correspond to resonance conditions in the triad. With an
increase in a, (Re, ) in the range 0.015 to 0.4% (curves 3-5) the peak of ¢ (b) shifts toward
k/@,*>=1.6, and with a further increase in a, (Re, ) its position remains unchanged (curves 5,
6). Atpoint Re ; with the same initial amplitudes the ratio k/&, varies from 1.9 to 2.7.

Due to this relationship between predominant propagation angles and Re, during a process
of parametric evolution three dimensional subharmonics with different, Re-dependent ratios
k/a,(for a fixed a, (Rea )) will have the greatest amplitudes of longitudinal velocity a(Re).
The dashed lines 1’-3’ in Flgure 4 illustrate the relationship of the amplitude of longitudinal
velocity a at a point Re in the vicinity of branch II of the c.n.s. to the slope of k/&, for
different a; (Re, ). It is apparent that when a,2 0.05% (corresponding to a ; (Re 4 )20.5%,
perturbations with k/, ~ 2 independent of a, will have the highest a . It would be of



interest to point out the increase in the selectivity of a boundary layer with an increase in a
(the curves acquire increasingly sharper peaks).

Let us note that in a nongradient flow A. /A, does not depend on the Re point and is
completely determined by the amplitude of the primary wave [16]. As calculations have
shown, this is also valid for 2 = 0.1. In this case a change in a; (Re, ) from 0.02 to 0.04% is
accompanied by a change in k/@, from 1.3 to 1.8, which remains constant with a further
increase in a, (Re,). The maximum rates of increase in ¢ (for specific initial a ;, ) are
several times greater when 8 = -0.1 than when /2 = 0.1. Consequently, the amplitudes of
the subharmonic and primary waves are equalized in a narrower range of Reynolds numbers
when
A< 0

Ao(>
0,02 4

Qo7

Figure 3. Desynchronization 44 for different values of b

0.18 (1), 017 (2), 0,151 (3). 0,122 (4),70,22 (5
22(6), 0175 (7)."  Re=4d0; F,’ ('Reg()i
=1,15-10—4,
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Figure 4. The b distribution of the local rate of increase of a subharmonic at point Re = 575

(solid lines)

1 —a,=0, 2 —a,(Res)==0,007%; 3 — 0.017%, £—
0.035%, 5—0,07%, 6 — 0.1%.
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The b distribution of the amplitude of a subharmonic a at point Re = 705 (dashed lines)

I —a,(Req) =0,038%, 2 —
0,07%; 3—0,1%. B=—0,1, Reg=450, = Fy (Reg) =

=1,15-10"%, a(Reo)=0,001%.

Thus, as in the case of a flat plate, a broad k-spectrum of unstable three dimensional
subharmonic perturbations occurs in gradient flows when the amplitude of a T-S plane wave
is sufficiently low (~ 0.02%). The most “dangerous” are three dimensional modes which are
linearly stable for all Re and whose rates of increase are an order of magnitude or more
higher than maximum (for given 8 and F ) linear rates of increase. The transversal wave
number k of the most unstable mode is determined by the amplitude of the T-S plane wave
and when <0 may depend on Re.

Let us examine the change in the energy of this subharmonic mode during the evolution
process with respect to Re: . VST A |

i d a? A
Z T

a, cos @,

where -
¢=10P, — . — by, +argS —argv, + argh,.

The efficiency of energy transfer is determined by the nature of the relationship g0 (Re a,
). Figure 5 gives the function g0 for different primary wave amplitudes (curves 1-3). It also
illustrates the curves arg h .. (curve 4) and argh, + arg S - arg v (curve 5). The presence of
the imaginary parts S and v, is a synchronizing factor determined by viscosity properties. An
increase in the amplitude of the primary wave
(a1>0 02%) has a synchronizing effect by locahzmg the difference in phases 1]) -, 1P thus
ensuring maximum energy transfer to the given subharmonic component.

asg e S 70 re

1— a)(Re)=~0,01%; 2-—0,04%, 3—0,1%, 4~—
arg hy; 5—arg hy+arg S — arg va. g=—0.1,
Reg=450, 17‘1(Reo)-1,15-10'_“l b=0,31, X=500.

Figure 5. The phase function ¢p for different primary wave amplitudes a (solid curves 1-3)



5. In the region of nonlinear interaction the most interesting effect of the pressure gradient
(which is lacking when B > 0) is an increase in the rate of increase of O of a fixed
subharmonic mode with a decrease in its intensity a, (Re, ) when £<0. This is valid with
respect to the difference of the initial phase difference from zero. This relationship means
that explosive amplification when & < 0 will occur in a narrow range of Reynolds numbers
with a wide variation of initial low frequency perturbation parameters.

A direct comparison of the evolution of a triplet under conditions of different pressure
gradients would not be trivial, because it would be impossible to determine the
nondimensional values of the range of development (Re, , Re ; ) and the parameters k and f
without establishing some correspondence between nondimensionalizing parameters for
different A5 .

Figure 6 gives an example of calculating the evolution of a triplet on a physical range (x,, x,
) for three values of B. x, and the velocities of external flow at this point U, (x, ), which
are assumed to coincide at it for all 8 , were chosen as common for the linear scale and the
velocity scale. Then while when B = 0 points x, and x 4 correspond to Reynolds numbers
of Re2’ and Re‘® , when B8 # 0, they correspond to Reynolds numbers of Reg™’ = Re ;0)
and Re 7 = R,e;f}
(Re§’ /Re f’ )" . In the process the numerical values of F, and k at point x, will coincide
for all B. As is apparent from Figure 6, a transition from faster flow (£ > 0) to slower flow (8 <
0) is accompanied by a significant rise in the rate of increase of the amplitudes of all
components of the triplet.

—
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Figure 6. A comparison of the rates of increase of the components of the triplet a (solid
lines) and a (dashed lines) for different values of 4.

Thus, calculation results indicate that resonant interaction in triads in the presence of a
pressure gradient is qualitatively similar to the case of nongradient flow. The amplitude of
the plane wave is the primary factor determining mode discrimination and the evolution of
the triplet. If the amplitude of the plane wave is greater than some sufficiently low threshold
level, a broad spectrum of three dimensional subharmonic perturbations will be excited in all
the flows considered. In slower flows the amplitudes of the primary wave and subharmonic



are equalized in a narrower range of Reynolds numbers and the rates of increase of both
components are much higher. The above makes it possible to infer that a positive pressure
gradient has a destabilizing effect on resonant interaction in triads, which makes the role of
gradients decisive in subharmonic transitions on actual streamline bodies.
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